Dynamic Trot-Walking with the Hydraulic Quadruped Robot - HyQ: Analytical Trajectory Generation and Active Compliance Control
نویسندگان
چکیده
This paper presents a trajectory generator and an active compliance control scheme, unified in a framework to synthesize dynamic, feasible and compliant trot-walking locomotion cycles for a stiff-by-nature hydraulically actuated quadruped robot. At the outset, a CoP-based trajectory generator that is constructed using an analytical solution is implemented to obtain feasible and dynamically balanced motion references in a systematic manner. Initial conditions are uniquely determined for symmetrical motion patterns, enforcing that trajectories are seamlessly connected both in position, velocity and acceleration levels, regardless of the given support phase. The active compliance controller, used simultaneously, is responsible for sufficient joint position/force regulation. An admittance block is utilized to compute joint displacements that correspond to joint force errors. In addition to position feedback, these joint displacements are inserted to the position control loop as a secondary feedback term. In doing so, active compliance control is achieved, while the position/force trade-off is modulated via the virtual admittance parameters. Various trot-walking experiments are conducted with the proposed framework using HyQ, a ∼ 75kg hydraulically actuated quadruped robot. We present results of repetitive, continuous, and dynamically equilibrated trot-walking locomotion cycles, both on level surface and uneven surface walking experiments.
منابع مشابه
Feedforward and Feedback Dynamic trot Gait control for a Quadruped walking Vehicle
To realize dynamically stable walking for a quadruped walking robot, the combination of the trajectory planning of the body and leg position (feedforward control) and the adaptive attitude control using sensory information (feedback control) is indispensable. In this paper, we initially propose a new trajectory planning for the stable trot gait named 3D sway compensation trajectory, and show th...
متن کاملFeedforward and Feedback Dynamic Trot Gait Control for Quadruped Walking Vehicle
Abstract. To realize dynamically stable walking for a quadruped walking robot, the combination of the trajectory planning of the body and leg position (feedforward control) and the adaptive control using sensory information (feedback control) is indispensable. In this paper, we propose a new body trajectory, the 3D sway compensation trajectory, for a stable trot gait; we show that this trajecto...
متن کاملDesign for Several Hydraulic Parameters of a Quadruped Robot
For a quadruped robot with 12 active joints driven by linear hydraulic actuators, some important parameters, such as the oil flow of the hydraulic system and the needed maximum output force of each actuator, are hard to calculate precisely with kinematics and dynamics equations. The oil flow is mainly determined by the walking speed of the quadruped robot, but also influenced by the stride freq...
متن کاملEnergy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking
In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...
متن کاملDynamics modeling and stable gait planning of a quadruped robot in walking over uneven terrains
Quadruped robots have unique capabilities for motion over uneven natural environments. This article presents a stable gait for a quadruped robot in such motions and discusses the inverse-dynamics control scheme to follow the planned gait. First, an explicit dynamics model will be developed using a novel constraint elimination method for an 18-DOF quadruped robot. Thereafter, an inverse-dynamics...
متن کامل